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Motion in constant magnetic Field
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Radiation of a moving charge
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Before that
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Energy-momentum (stress) tensor
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Action principle for electromagnetic
held and for a charged particle.
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principles : · Lorentz invariance

· Gange invariance
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· Derive Maxwell equations
· Derive Lorentz loce:
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This term also need to integrate by
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Time reparametrizations :

choose =+ and multiply both
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we rechognize the relativistic Lorentz
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The next step is to derive

May well equations from variation

of the action with respect to A
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· When we vary
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Variation of Fro FRO contains four
terms

,

but they all give the same

answer (after integrating by parts)
this is the inhomogeneous Max well equation
· since we work with Ar -

grips Oppo is automatic .

· To conclude; We derived Maxwell

equations,
and Force from the

minimum action principle
· Benefits of the action : symmetrics ,

uniqueness.



Review

Maxwell equations :
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For given E and B there is

ambiguity in F and I called
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C and If are satisfied automatically)
· It is often easier to lind PandI
in a given problem and then derive
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Boundary problems
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Electric Magnetic
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GreensMinction :
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that together produce the

needed boundary conditions.

Works equivalently for magnetic case :
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localized on the lightcone :
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Physical meaning : Electric (Magnetic
field produced by a point-like
instantaneous charge (current)
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In medium :
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· We bound the multiple expansion

in the static case : summed over
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